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A new approach to calculating Floquet spectra of multilayered periodic waveguides
is presented. The problem is formulated as an eigenvalue problem of the Helmholtz
equation on an infinite strip with discontinuous wavenumber. The strip is decomposed
into a rectangle and two semi-infinite domains, and the problem is reduced to a
nonlinear eigenvalue problem involving Dirichlet-to-Neumann (DtN) operators on
the interfaces of the domains. A solution scheme based on the Taylor expansion of the
DtN operator with respect to the Floquet exponent, whose order of convergence can
be made arbitrarily large, is derived. An application to a typical waveguide geometry
demonstrates the efficiency and accuracy of the approach.c© 2000 Academic Press
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1. INTRODUCTION

Thin film waveguides containing periodic corrugations are of considerable interest for
integrated optics and millimeter waves. They have important applications in distributed
feedback lasers [11], coupling of waveguides [4, 19], leaky-wave antennas [16] and many
other fields.

The form of waves traveling along az-periodic structure is described by Floquet’s theo-
rem. The theorem states that a time-harmonic electromagnetic fieldF(x, y, z) of a normal
mode has the property that

F(x, y, z+ d) = eγd F(x, y, z), (1)

whered is the length of the period for the physical corrugation. In the following we will
assume that the problem is scaled so thatd = 1.

The Floquet exponent (or propagation constant)γ is in general complex; its real part
represents the attenuation and its imaginary part the phase shift in one period. The Floquet
multiplier is given byeγ and is the number by which the normal mode is multiplied under a
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shift. The mathematical problem common to the aforementioned applications is to determine
the dominant modes for a given structure as a function of the the frequency.

A related problem is the calculation of Floquet spectra of doubly periodic structures
such as photonic crystals; see, e.g., [2, 7, 8] and the references therein. There the unit
cell of the period is a finite domain, which leads after discretization to a linear eigen-
value problem. Since multilayered waveguides are singly periodic the unit cell is an in-
finite strip and additional physical phenomena, such as leaky waves (i.e., radiation away
from the grating region), can occur. The unbounded domain also requires special compu-
tational consideration, which leads, as we will describe below, to a nonlinear eigenvalue
problem.

While the quantitative behavior of the Floquet spectrum of axially periodic multilayered
structures is well understood [6, 13], good numerical schemes for finding the exact location
of the Floquet exponents are difficult to obtain. Several methods have been investigated.
The common feature of these approaches is that the field in the uniform layers surround-
ing the grating region is expanded as an infinite sum of spatial harmonics in the form
exp[(2π ik+ γ )x+ i γkz], whereγk depends on the unknown Floquet exponent through a
dispersion relation. The field in the grating region is either again expanded in harmonics
[15], converted to a system of ordinary differential equations [5], or, more recently, treated
with a boundary element technique [9]. To ensure continuity, the fields inside and outside
the grating region must be matched. The result is a nonlinear eigenvalue problem, i.e., the
problem at hand is to find the Floquet exponentγ that makes the discretization matrixA(γ )
singular. Because of the dispersion relation some of the entries in the matrix depend onγ

in a highly nonlinear fashion. The numerical method used for this problem is to solve det
A(γ )= 0 by either Newton’s or Muller’s method [3]. However, discretizations lead to large
ill-conditioned systems and hence the determinant is a bad indicator for the numerical rank
of a matrix. For a description of some of the issues in this context see [17].

A commonly used method for unbounded spatial domains is to introduce an artificial
boundary and use the Dirichlet-to-Neumann (DtN) map of the exterior domain as a boundary
condition. The resulting problem is posed on a finite domain and can be treated with standard
discretization methods. For artificial boundary conditions for scattering problems we refer
to, e.g., [12], and in the context of waveguides to, e.g., [10]. When the Floquet spectrum is
to be determined this approach leads to a nonlinear eigenvalue problem whose size is the
number of degrees of freedom in the discretization of the interior problem.

To decrease the size and to improve the conditioning of the nonlinear eigenvalue problem,
we consider in this article using DtN operators for the exteriorand the interior domain.
We will show in Section 3 that this approach leads to a nonlinear eigenvalue problem
T(γ ) which is posed on the artificial boundary. Since typically only a few harmonics will
suffice for its discretization, the resulting nonlinear eigenvalue problem is very small and
well-conditioned. Instead of solving for roots of the determinant, we will derive a matrix–
Newton scheme that, for a given iterate ¯γ , finds a new approximation ofγ that makes
themth order truncated Taylor expansion ofT(γ ) at γ̄ singular. We will describe how the
Taylor coefficients can be calculated stably without using derivatives in Section 4. Section 5
discusses how the Taylor expansion of the exterior DtN operators can be calculated if the
exterior problems contain an arbitrary number of uniform layers. This is important to keep
the interior problem as small as possible. Finally, Section 6 concludes with a numerical
example that demonstrates the convergence properties of the discretization scheme and the
nonlinear solver.
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2. PROBLEM DESCRIPTION AND NOTATIONS

We consider the propagation of polarized electromagnetic waves through a structure
which is homogeneous iny-direction and periodic inz-direction with period one. In the TE
case the electric field only has a component in they-direction, i.e.,E(x, y, z)= u(x, z)ey,
where the wave functionu satisfies the Helmholtz equation

1u+ κ2u = 0. (2)

A typical waveguide geometry consists of a substrate region, several stratified layers, a
small grating layer, and an air superstrate region. The different layers are denoted byÄ j ,
j = 0, . . . , J. The super- and substrate regions,Ä0 andÄJ , respectively, have infinite extent.
A typical geometry is shown in Fig. 1.

We assume that the magnetic permeabilityµ is constant and that the electric permittivityε
is constant within each layer. Therefore the wave numberκ is a piecewise constant function,

κ(x, z) = κ j := ω√µ0ε j , (x, z) ∈ Ä j . (3)

On the interfaces of two layers the wave potential and its normal derivative are continuous,
i.e.,

u+ = u− and
∂

∂n
u+ = ∂

∂n
u−. (4)

Using Floquet theory, PDEs with periodic coefficients can be reduced to problems posed
on one periodic cell (for a description of the theory for PDEs see, for instance, [14]). In that
cell, the solutions of the Helmholtz equation (2) are of the form

u(x, z) = exp(γ z)v(x, z) (5)

wherev is periodic inz andγ is an unknown complex number, usually referred to as the
fundamental propagation constant or as the Floquet exponent.

Substituting the form ofu in (5) into the Helmholtz equation (2) results in the following
PDE forv

1v + 2γ vz+ (γ 2+ κ2)v = 0. (6)

FIG. 1. Typical waveguide geometry.
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Because of periodicity, (6) can be solved in the unit stripR× [0, 1] with periodic boundary
conditions. The core problem that must be solved is to find the characteristic values ofγ

for which Eq. (6) has a nontrivial solution.
For the infinite and stratified layers the solution of (6) can be obtained by separation of

variables. In thej th layer the wave function is a linear superposition of spatial harmonics
in the form

v
± j
k (x, z) = exp

(±i γ j
k x
)

exp(2π ikz), (7)

whereγ j
k is the transverse wave number and is given by the dispersion relation

γ
j

k =
√
(γ + 2π ik)2+ κ2

j . (8)

While in each finite layer there are two fundamental modes corresponding to the sign in
(7), there is only one mode in the semi-infinite layers. Usually the sign is chosen so that
energy flows or decays away from the structure [15].

Inside the grating layer the wave number is a function ofx andz. Hence solutions can no
longer be expressed in closed form and must be determined numerically, for instance with
a finite element scheme. As it is not possible to discretize the whole strip, the solution for
the grating layer must be coupled with the analytical solution in the uniform layers. The
method used in this paper is based on matching the Dirichlet-to-Neumann operators on the
interfaces of the domain and will be described below.

3. PROBLEM REDUCTION USING DIRICHLET-TO-NEUMANN MAPS

Decompose the infinite strip into three rectangular domainsD+, D−, andD0 as illustrated
in Fig. 2. DomainD0 contains the grating region;D+, D− have infinite extend in positive
and negativex-direction, respectively. The interfaces betweenD0 andD± are denoted byS±.
For now we stipulate that the semi-infinite domains are subsets ofÄ0 andÄJ , respectively;
that is, the wave numberκ is constant in both domains. For structures that contain a large
number of layers it is desirable to include the uniform layers inD+ and D− to save on
computational work forD0. The alteration of the method for this case will be discussed in
Section 5.

Assume thatγ is a number for which the interior problem

1v + 2γ vz+ (γ 2+ κ2)v = 0 in D0

v = f± on S±
v periodic inz

(9)

FIG. 2. Decomposition of the infinite strip.
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is uniquely solvable. Then a pair of functionsf± maps onto the normal derivatives∂v±/∂n
of the solution to (9) restricted toS+ andS−. Forγ fixed this is the Dirichlet-to-Neumann
(DtN) operator which will be denoted byTint(γ ) in the following. Similarly, the exterior
problems

1v + 2γ vz+ (γ 2+ κ2)v = 0 in D±
v = f± on S±

v periodic inz
(10)

give rise to a DtN map which is denoted byText(γ ). The numerical method for determine
the characteristic values of the full problem (6) is based on the following observation.

LEMMA 1. Supposeγ is such that the interior and exterior problems are uniquely
solvable. Thenγ is a characteristic value of(6) if and only if T(γ ) := Tint(γ )− Text(γ ) is
singular.

Proof. Let v, γ be an eigenpair of the full problem (6). Then the derivative∂v/∂x
is continuous and henceT(γ )v= 0, i.e., the DtN map is singular. On the other hand, let
T(γ )v = 0 for av 6= 0. Since the problems inD0 andD± are uniquely solvable,v extends
to a solution of the interior and exterior problems, and, asv is continuous and differentiable
across the interfacesS±, the extension is also a solution of (6).

Instead of solving (6) directly, our numerical method is based on finding the values ofγ

for which the DtN-mapT(γ ) is singular. This is a nonlinear eigenvalue problem in a vector
space of functions on the interfacesS±.

Functions on the interfaces can be expanded in terms of the Fourier modes

e±k (z) =
{

exp(2π ikz) on S±,
0 onS∓,

k ∈ Z. (11)

In this basis the exterior DtN-map is a diagonal operator

Text(γ )e
±
k = is±k γ

±
k e±k , k ∈ Z, (12)

whereγ+k andγ−k follow from the dispersion relation (8) ands±k is the sign of the solution
(7) for the infinite layer.

Since there is a non-uniform layer in the domainD0, the Fourier modes of the interior
DtN-map are coupled and thereforeTint(γ ) is not a diagonal operator in basis (11). The
coefficients ofTint(γ ) must be determined by first solving the interior problem (9) with
boundary conditionf± = e±k and then calculating the Fourier coefficients of the solution
v±k , i.e.,

Tint(γ )
±,±
l ,k =

〈
e±l ,

∂v±k
∂n

〉
, k, l ∈ Z. (13)

In order to calculate the Floquet exponents numerically, two discretizations are necessary.
First, only Fourier modes of order|k| ≤ p are used to approximate the DtN maps. The
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truncation can be regarded as the Galerkin discretization ofT(γ )v= 0 using the Fourier
modes up to a given order as the trial- and test space. Solving the interior problem numeri-
cally involves a second discretization step. A large number of options are available, in our
implementation we have used the finite element method [18].

4. MATRIX-NEWTON SOLVER

After discretizing the DtN operators the problem on the interfaces reduces to a matrix
problem of size 4p+ 2. The matrix entries depend nonlinearly on the Floquet exponentγ

and the problem at hand is to findγ such thatT(γ ) is singular. In principle, this problem
can be rewritten as detT(γ ) = 0 and solved by the Newton method, but the iteration can be
slow, especially near Bragg conditions where solution branches intersect or nearly intersect.

Instead of dealing with the determinant, consider the truncated Taylor expansion of the
DtN operator

Tm(σ ) = T̄0+ σ T̄1+ · · · + σmT̄m, (14)

whereγ = γ̄ + σ and

T̄l = 1

l !

∂ l

∂γ l
T(γ̄ ), l = 0, . . . ,m. (15)

For the current iterate ¯γ the next iterate is determined from the smallest value (in modulus)
of σ that makes the matrix polynomial (14) singular. For that, write

T̄m(σ ) = σmT̄0 Sm

(
1

σ

)
, (16)

where

Sm(λ) = A0+ λA1+ · · · + λm−1Am−1+ λmI (17)

and Ak = T̄−1
0 T̄m−k. SinceT̄0 is nonsingular (otherwise ¯γ would be a Floquet exponent),

the matrix polynomialTm(σ ) becomes singular only ifSm(1/σ) is singular. It follows
that the correction of the current iterate is given by the reciprocal of the largest eigenvalue
of the companion matrix 

−A0

I −A1

I −A2
. . .

...

I −Am−1

 (18)

of the matrix polynomialSm. Thus the companion matrix has sizem(4p+ 2) and hence,
sincep andmare typically small, the eigenvalue problem can be solved inexpensively using
standard linear algebra routines.

It remains to determine the expansion coefficientsT̄0, T̄1, . . . , T̄m. In the following we will
describe how these terms can be calculated stably without evaluating numerical derivatives.
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Expansion of the Exterior DtN-Map

The diagonal coefficients of the exterior DtN-map are determined by the dispersion
relation (8) for which the Taylor expansion must be determined. Ifγ = γ̄ + σ then the
transverse wave number can be considered as a function of the perturbation, i.e.,γ±k =
γ±k (σ ). Dropping obvious super- and subscripts and setting ¯γk =

√
(2π ik + γ̄ )2+ κ2 and

µk = −(2π ik + γ̄ )/γ̄k, one obtains the expansion

γk(σ ) = γ̄k

√
1− 2µk

σ

γ̄k
+
(
σ

γ̄k

)2

(19)

= γ̄k

∞∑
n=0

Cn(µk)

(
σ

γ̄k

)n

. (20)

The functionsCn(µ) are orthogonal polynomials which have three-term recurrence rela-
tions; see, e.g., Abramowitz and Stegun [1, Formulas 22.9.4 and 22.7.3].

Expansion of the Interior DtN-Map

The interior DtN-map and its expansion coefficients have no closed form. Therefore the
coefficients must be determined from an expansion of the solution of the interior problem
in terms of the perturbationσ . For this, write (9) symbolically in the form(

A+ σ B+ σ 2I
)
v = 0, in D0 (21)

v = f, on S±, (22)

whereγ = γ̄ + σ and

Av = 1v + 2γ̄ vz+ (γ̄ 2+ κ2)v, (23)

Bv = 2γ̄ (vz+ v). (24)

Thus the solution of (9) is a function of the perturbationv = v(σ, x, z) with expansion

v(σ, x, z) =
∞∑

n=0

σ nvn(x, z). (25)

If the above series is substituted into the partial differential equation, it can be seen that the
coefficientsvn satisfy

Av0 = 0, in D0,

v0 = f, on S±,
(26)

Av1 = −Bv0, in D0,

v1 = 0, on S±,
(27)

Avn = −Bvn−1− vn−2, in D0,

vn = 0, on S±,
n = 2, 3, . . . . (28)

Thus the functionsvn and the expansion coefficients of the interior DtN-map can be cal-
culated iteratively. Each step of the iteration involves an inversion of the interior problem
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for the current iterate ¯γ with an inhomogeneity which depends on the previously calculated
functions. Since this iteration has to be done for the 4p+ 2 harmonics in the discretization
of T(γ ), the calculation of the entries in the companion matrix (18) takes(m+ 1)(4p+ 2)
solutions of the interior problem.

5. EXPANSION OF TRANSLATION OPERATORS

Since the interior problem must be solved repeatedly for each step of the nonlinear solver,
it is important for the efficiency of the method that the domainD0 is kept as small as possible.
This can be achieved by including the uniform layers in the exterior domainsD+ andD−.
In that case, the exterior DtN-map is still a diagonal operator, because no mode coupling
occurs, but it is no longer given by the dispersion relation (8). In this section we will derive
the form of the DtN-map and its expansion coefficients. For this it is convenient to write
the solution in the uniform layers (7) for modek and layerj in the form

v
j
k (x) = φ j

k (σ )c
j
k(σ, x)+ ψ j

k (σ )s
j
k (σ, x), xj−1 ≤ x ≤ xj , (29)

whereσ is the perturbation ofγ and

cj
k(σ, x) = cos

(
γ

j
k (σ )(x − xj−1)

)
, (30)

sj
k (σ, x) = sin

(
γ

j
k (σ )(x − xj−1)

)/
γ

j
k (σ ). (31)

Hence the state variablesφ j andψ j describe the system at the interface of two layers

v
j
k (xj−1) = φ j−1

k (σ ), (32)

d

dx
v

j
k (xj−1) = ψ j−1

k (σ ). (33)

Sincev and its derivative are continuous functions the state variables of two adjacent layers
are coupled, [

φ
j
k (σ )

ψ
j

k (σ )

]
= T j

k (σ )

[
φ

j−1
k (σ )

ψ
j−1

k (σ )

]
, (34)

whereT j
k is the translation of the state variables across layerj , which is the matrix

T j
k (σ ) =

 cj
k(σ, xj ) sj

k (σ, xj )

d
dxcj

k(σ, xj )
d

dxsj
k (σ, xj )

. (35)

Thus the translation of the state variables from the outer- to the innermost layer (i.e., the
interfaceS− located atxj− ) is the product of the translation operators across all layersφ j−

k (σ )

ψ
j−

k (σ )

 = T j−
k (σ ) · · · · · T1

k (σ )

[
1

γ−k (σ )

]
. (36)

The translation to the interfaceS+ located atxj+ follows in a similar fashion. The DtN maps
at S± are then given by

Text(σ ) e±k =
ψ

j±
k (σ )

φ
j±
k (σ )

e±k . (37)
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Beginning with the dispersion relation (8), the DtN operator for the exterior problem
consists of several applications (products) of translations followed by a division. To obtain
the Taylor expansion ofText(σ ), power series expansions must be multiplied and divided,
which reduces to convolutions and deconvolutions of the expansion coefficients. Thus the
expansion of the dispersion relation (20) must be repeatedly convolved with the expansion
of the translation matrices. Finally, the resulting series must be divided (i.e., deconvolved)
to obtain the expansion of the DtN map at the interfacesS±.

Since the expansion ofγ±(σ ) has already been derived in (20), it remains to obtain the
expansion of the translation matricesT j

k (σ ). This reduces to finding the Taylor series of the
functionscj

k andsj
k . The explicit form of the coefficients is a rather complicated expression,

but the coefficients can also be calculated iteratively in a similar way as for the interior
problem in (26)–(28). The details of the derivation are described in the appendix.

6. NUMERICAL EXAMPLE

To demonstrate the feasibility of this approach to calculating Floquet exponents asso-
ciated with periodic dielectric waveguides we include a simple example with geometry
similar to that in Fig. 1, which consists of three layers whose wavenumbers are given
by κ0=

√
2.3ω, κ1=

√
3ω, andκ2=ω. The layerÄ1 contains a rectangular corrugation

0.4 units in height. The smallerx-extent ofÄ1 is 2/π . This example makes frequent ap-
pearances in the literature; see, e.g., [3].

For our calculations, the interfacesS± coincide with the grating layer. Thus there is one
translation operation across the guiding layer for the state variables. The interior problem
was discretized into rectangles with piecewise bilinear basis functions.

Figure 3 shows the dependence of the phase shift−Im γ of the frequencyω. There are
three solution branches in the displayed frequency range, they intersect at the first and second

FIG. 3. ω–β Plot.
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FIG. 4. α–ω plot for the main branch (top) and the other two branches (bottom).

Bragg condition. Figure 4 shows the attenuation factor−α for the three solution branches
as a function ofω. Before the first Bragg there is no radiation and since the materials have
been assumed to be lossless, the attenuation is zero. At the first Bragg a stopband appears,
at the second Bragg a sharp drop occurs before the attenuation goes back to normal.

TABLE I

Convergence of the Dominant Floquet Exponent,ω = π

−Re(γ )

h 0.1 0.05 0.025 0.0125 0.00625

p = 0 −7.77e-15 −3.47e-13 −7.68e-13 1.08e-11 1.36e-11
p = 1 0.010576 0.0098030 0.0096199 0.0095745 0.0095631
p = 2 0.010458 0.0096259 0.0094239 0.0093737 0.0093611
p = 3 0.010459 0.0096259 0.0094248 0.0093746 0.0093620
p = 4 0.010459 0.0096254 0.0094241 0.0093738 0.0093612
p = 5 0.010459 0.0096255 0.0094242 0.0093739 0.0093613
p = 6 0.010459 0.0096254 0.0094241 0.0093738 0.0093612
p = 7 0.010459 0.0096254 0.0094241 0.0093738 0.0093612

−Im(γ )

h 0.1 0.05 0.025 0.0125 0.00625

p = 0 4.98213 4.98100 4.98059 4.98046 4.98043
p = 1 4.96719 4.96633 4.96608 4.96601 4.96599
p = 2 4.96719 4.96639 4.96610 4.96604 4.96602
p = 3 4.96720 4.96639 4.96615 4.96609 4.96607
p = 4 4.96720 4.96639 4.96615 4.96609 4.96607
p = 5 4.96720 4.96639 4.96616 4.96609 4.96607
p = 6 4.96720 4.96639 4.96616 4.96609 4.96607
p = 7 4.96720 4.96639 4.96616 4.96609 4.96607
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FIG. 5. Convergence of nonlinear solver cond−1T(γ ) vs iterate,ω= 3.14 (left) andω= 2.02 (right).

Table I displays the real and imaginary parts of the dominant Floquet exponent as a
function of the number of modes and the mesh width used in the discretization of the DtN-
map. Even for a very coarse mesh and a small number of modes the approximation is close
to the one obtained with fine meshes and highp. The convergence inp is much faster than
that in h; therefore even for fine meshes a lowp will suffice. The results in the table are
shown forω = π , the convergence behavior at the other frequencies is similar.

In Fig. 5 we show the behavior of the nonlinear solver as a function of the number
of moments in the expansion of the DtN-map. Forω= 3.14 the convergence is faster as
the number of moments is increased, but even a small number of moments suffices to
achieve rapid convergence. Where solution branches intersect or nearly intersect one would
expect the convergence rate of the nonlinear solver to deteriorate. However, our experiments
revealed that once the iterate is sufficiently close to the actual solution, the convergence
near the Bragg conditions is almost as rapid in regions where there is only one solution
branch.

7. CONCLUSIONS

In this paper we have introduced a new approach to calculating the Floquet modes of two-
dimensional waveguides. The main feature of our method is the reduction of the eigenvalue
problem posed in an infinite strip to an eigenvalue problem posed on two intervals of
unit length. The matrix–Newton method is better suited for nonlinear eigenvalue problems
associated with Floquet-type wave phenomena than methods that are based on setting the
determinant to zero. The numerical results demonstrate that Floquet modes can be calculated
accurately and efficiently by retaining a small number of harmonics in (11) and a small
number of expansion terms in (14). The approach of finding the characteristic values of the
DtN map rather than the PDE can readily be extended to problems which are inherently
three-dimensional.

The method presented of determining the eigenvalues assumes that the assumptions of
Lemma 1, namely that the interior and exterior problems are uniquely solvable, hold in a
neighborhood of the Floquet exponent. The exterior problem is always solvable as soon as
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the sign in (7) is determined, and the solvability of the interior problem can be controlled
by the extend of the domainD0. In our experiments the assumptions of the lemma never
appeared to cause any problems.

APPENDIX

The expansion coefficients of the functionscj
k andsj

k defined in (30) and (31) can be
obtained recursively. The calculation is based on the observation that both functions satisfy
the differential equation

y′′ + ((γ + 2π ik)2+ κ2
j

)
y = 0 (38)

with boundary conditions

y(xj−1) = 1, y′(xj−1) = 0, for ck
j , (39)

y(xj−1) = 0, y′(xj−1) = 1, for sk
j . (40)

If γ = γ̄ + σ both functions can be expanded in the form

∞∑
n=0

σ nyn(x). (41)

Substituting this expansion into the differential equation, it follows that theyn’s solve the
recurrence relation

y′′n +
(
γ̄

j
k

)2
yn = −2γ̄ j

k yn−1− yn−2, n= 1, 2, . . . (42)

yn(xj−1) = y′n(xj−1) = 0, (43)

wherey−1 = 0 andy0(x) = cos(γ̄ j
k (x− xj−1)) for cj

k or y0(x) = sin(γ̄ j
k (x− xj−1))/γ̄

j
k for

sk
j . The solution of the above differential equation with right hand sidef can be expressed

using the Green’s function for this problem,

y(x) = 1

γ̄
j

k

∫ x

0
sin
(
γ̄

j
k (x − t)

)
f (t) dt ≡ S f(x). (44)

Settingcn(x) = cos(γ̄ j
k x)xn andsn(x) = sin(γ̄ j

k x)xn, we see that

Scn = 1

γ̄
j

k

(
1

n+ 1
sn+1− n

2
Ssn−1

)
, (45)

Ssn = 1

γ̄
j

k

( −1

n+ 1
cn+1+ n

2
Scn−1

)
. (46)

By combining Eqs. (44), (45), and (42), it follows that the expansion coefficientsyn(x) are
linear combinations of the functionsc0, . . . , cn ands0, . . . , sn, whose weights can be again
recursively determined.
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