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Anew approach to calculating Floquet spectra of multilayered periodic waveguides
is presented. The problem is formulated as an eigenvalue problem of the Helmholtz
equation on an infinite strip with discontinuous wavenumber. The strip is decomposed
into a rectangle and two semi-infinite domains, and the problem is reduced to a
nonlinear eigenvalue problem involving Dirichlet-to-Neumann (DtN) operators on
the interfaces of the domains. A solution scheme based on the Taylor expansion of the
DtN operator with respect to the Floquet exponent, whose order of convergence can
be made arbitrarily large, is derived. An application to a typical waveguide geometry
demonstrates the efficiency and accuracy of the approaetrooo Academic Press
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1. INTRODUCTION

Thin film waveguides containing periodic corrugations are of considerable interest
integrated optics and millimeter waves. They have important applications in distribu
feedback lasers [11], coupling of waveguides [4, 19], leaky-wave antennas [16] and m
other fields.

The form of waves traveling alongzaperiodic structure is described by Floquet's theo
rem. The theorem states that a time-harmonic electromagnetidfigldy, z) of a normal
mode has the property that

F(x,y,z4+d) =eF(x, Y, 2, (1)

whered is the length of the period for the physical corrugation. In the following we wi
assume that the problem is scaled so that 1.

The Floquet exponent (or propagation constanty in general complex; its real part
represents the attenuation and its imaginary part the phase shift in one period. The Flc
multiplier is given bye” and is the number by which the normal mode is multiplied under
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shift. The mathematical problem common to the aforementioned applications is to deterr
the dominant modes for a given structure as a function of the the frequency.

A related problem is the calculation of Floquet spectra of doubly periodic structu
such as photonic crystals; see, e.g., [2, 7, 8] and the references therein. There the
cell of the period is a finite domain, which leads after discretization to a linear eige
value problem. Since multilayered waveguides are singly periodic the unit cell is an
finite strip and additional physical phenomena, such as leaky waves (i.e., radiation &
from the grating region), can occur. The unbounded domain also requires special cor
tational consideration, which leads, as we will describe below, to a nonlinear eigenv:
problem.

While the quantitative behavior of the Floquet spectrum of axially periodic multilayer
structures is well understood [6, 13], good numerical schemes for finding the exact loce
of the Floguet exponents are difficult to obtain. Several methods have been investig:
The common feature of these approaches is that the field in the uniform layers surro
ing the grating region is expanded as an infinite sum of spatial harmonics in the fc
expl(2rik + y)x +iwz], wherey depends on the unknown Floguet exponent through
dispersion relation. The field in the grating region is either again expanded in harmol
[15], converted to a system of ordinary differential equations [5], or, more recently, trea
with a boundary element technique [9]. To ensure continuity, the fields inside and out:
the grating region must be matched. The result is a nonlinear eigenvalue problem, i.e.
problem at hand is to find the Floquet expongitihat makes the discretization matéxy )
singular. Because of the dispersion relation some of the entries in the matrix depgnd
in a highly nonlinear fashion. The numerical method used for this problem is to solve
A(y) =0 by either Newton’s or Muller's method [3]. However, discretizations lead to larg
ill-conditioned systems and hence the determinant is a bad indicator for the numerical
of a matrix. For a description of some of the issues in this context see [17].

A commonly used method for unbounded spatial domains is to introduce an artifi
boundary and use the Dirichlet-to-Neumann (DtN) map of the exterior domain as a boun
condition. The resulting problem is posed on a finite domain and can be treated with stan
discretization methods. For artificial boundary conditions for scattering problems we re
to, e.g., [12], and in the context of waveguides to, e.g., [10]. When the Floquet spectrul
to be determined this approach leads to a nonlinear eigenvalue problem whose size
number of degrees of freedom in the discretization of the interior problem.

To decrease the size and to improve the conditioning of the nonlinear eigenvalue prob
we consider in this article using DtN operators for the exteaiod the interior domain.
We will show in Section 3 that this approach leads to a nonlinear eigenvalue probl
T (y) which is posed on the artificial boundary. Since typically only a few harmonics w
suffice for its discretization, the resulting nonlinear eigenvalue problem is very small :
well-conditioned. Instead of solving for roots of the determinant, we will derive a matri:
Newton scheme that, for a given iterate finds a new approximation gf that makes
themth order truncated Taylor expansionfy) aty singular. We will describe how the
Taylor coefficients can be calculated stably without using derivatives in Section 4. Secti
discusses how the Taylor expansion of the exterior DtN operators can be calculated i
exterior problems contain an arbitrary number of uniform layers. This is important to ke
the interior problem as small as possible. Finally, Section 6 concludes with a numer
example that demonstrates the convergence properties of the discretization scheme a
nonlinear solver.
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2. PROBLEM DESCRIPTION AND NOTATIONS

We consider the propagation of polarized electromagnetic waves through a struc
which is homogeneous irdirection and periodic iz-direction with period one. In the TE
case the electric field only has a component inythdirection, i.e. E(X, y, 2) = u(Xx, 2)ey,
where the wave function satisfies the Helmholtz equation

AU+ «2u =0. (2)

A typical waveguide geometry consists of a substrate region, several stratified layel
small grating layer, and an air superstrate region. The different layers are dendgd by
j =0, ..., J. The super- and substrate regiof2s and<2 ;, respectively, have infinite extent.
A typical geometry is shown in Fig. 1.

We assume that the magnetic permeabiliig constant and that the electric permittivity
is constant within each layer. Therefore the wave numliga piecewise constant function,

k(X,2) = kj ‘= w/10€j, (X, 2) € Qj. 3)

On the interfaces of two layers the wave potential and its normal derivative are continu
ie.,
d

0
and —ut = —u". (4)
an an

ut =u

Using Floquet theory, PDEs with periodic coefficients can be reduced to problems pc
on one periodic cell (for a description of the theory for PDEs see, for instance, [14]). In t
cell, the solutions of the Helmholtz equation (2) are of the form

u(x, 2) = exp(y 2)v(X, 2) (5)

wherev is periodic inz andy is an unknown complex number, usually referred to as th
fundamental propagation constant or as the Floquet exponent.

Substituting the form ofi in (5) into the Helmholtz equation (2) results in the following
PDE forv

Av +2yv, + (2 +k)v = 0. (6)

Qg 95 192 3

FIG. 1. Typical waveguide geometry.
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Because of periodicity, (6) can be solved in the unit gRip [0, 1] with periodic boundary
conditions. The core problem that must be solved is to find the characteristic valyes
for which Eg. (6) has a nontrivial solution.

For the infinite and stratified layers the solution of (6) can be obtained by separatio
variables. In the th layer the wave function is a linear superposition of spatial harmoni
in the form

vl (x,2) = exp(£i w X) exp(2rikz), (7

Whererj is the transverse wave number and is given by the dispersion relation

W=/ +27ik)2 + k2. ®)

While in each finite layer there are two fundamental modes corresponding to the sig
(7), there is only one mode in the semi-infinite layers. Usually the sign is chosen so
energy flows or decays away from the structure [15].

Inside the grating layer the wave number is a functior ahdz. Hence solutions can no
longer be expressed in closed form and must be determined numerically, for instance
a finite element scheme. As it is not possible to discretize the whole strip, the solution
the grating layer must be coupled with the analytical solution in the uniform layers. T
method used in this paper is based on matching the Dirichlet-to-Neumann operators o
interfaces of the domain and will be described below.

3. PROBLEM REDUCTION USING DIRICHLET-TO-NEUMANN MAPS

Decompose the infinite strip into three rectangular domBinsD _, andDg as illustrated
in Fig. 2. DomainDg contains the grating regiom), , D_ have infinite extend in positive
and negative-direction, respectively. The interfaces betw&yandD.. are denoted b$. .
For now we stipulate that the semi-infinite domains are subs&g ahd<2 ;, respectively;
that is, the wave numbaeris constant in both domains. For structures that contain a lar
number of layers it is desirable to include the uniform layer®inand D_ to save on
computational work foiDq. The alteration of the method for this case will be discussed
Section 5.

Assume thay is a number for which the interior problem

Av+2yv,+ (Y2 +kHv =0 inDg

v="f. onS 9)
v periodic inz
I I :
D- | .\ Do -4 | D
I l .
S_ St

FIG. 2. Decomposition of the infinite strip.
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is uniquely solvable. Then a pair of functiofis maps onto the normal derivativés.. /on
of the solution to (9) restricted 18, andS_. Fory fixed this is the Dirichlet-to-Neumann
(DtN) operator which will be denoted b¥in:(y) in the following. Similarly, the exterior
problems

Av+2yv, 4+ (Y2 +k®Hv =0 inDy
v=f. onS: (10)
v periodic inz

give rise to a DtN map which is denoted by(y). The numerical method for determine
the characteristic values of the full problem (6) is based on the following observation.

LEMMA 1. Supposey is such that the interior and exterior problems are uniquely
solvable. Thew is a characteristic value d) if and only if T(y) := Tint(y) — Text(y) is
singular.

Proof. Let v,y be an eigenpair of the full problem (6). Then the derivating dx
is continuous and hence(y)v =0, i.e., the DtN map is singular. On the other hand, le
T(y)v = 0 forav#0. Since the problems iDg andD_. are uniquely solvable; extends
to a solution of the interior and exterior problems, and; escontinuous and differentiable
across the interfaceS., the extension is also a solution of (6)m

Instead of solving (6) directly, our numerical method is based on finding the valyges o
for which the DtN-mapr (y) is singular. This is a nonlinear eigenvalue problem in a vectc
space of functions on the interfac8s.

Functions on the interfaces can be expanded in terms of the Fourier modes

exp(2rikz) onS.,

keZz. (11)
0 ons;,

& (2 = {
In this basis the exterior DtN-map is a diagonal operator

Tex(V) 6 = iSgrce, keZ, (12)

wherey," andy, follow from the dispersion relation (8) arsg is the sign of the solution
(7) for the infinite layer.

Since there is a hon-uniform layer in the doma&g, the Fourier modes of the interior
DtN-map are coupled and therefofg(y) is not a diagonal operator in basis (11). The
coefficients ofTi, () must be determined by first solving the interior problem (9) witt
boundary conditionf. = € and then calculating the Fourier coefficients of the solutiol
vf, i.e.,

+,+ + 8vki
Tint(J/)|,|’( =(§ " an /) k,l € Z. (13)

In order to calculate the Floquet exponents numerically, two discretizations are neces
First, only Fourier modes of ordek| < p are used to approximate the DtN maps. The
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truncation can be regarded as the Galerkin discretization(pfiv =0 using the Fourier
modes up to a given order as the trial- and test space. Solving the interior problem nun
cally involves a second discretization step. A large number of options are available, in
implementation we have used the finite element method [18].

4. MATRIX-NEWTON SOLVER

After discretizing the DtN operators the problem on the interfaces reduces to a me
problem of size # + 2. The matrix entries depend nonlinearly on the Floquet expgnent
and the problem at hand is to findsuch thafT (y) is singular. In principle, this problem
can be rewritten as dat(y) = 0 and solved by the Newton method, but the iteration can |
slow, especially near Bragg conditions where solution branches intersect or nearly inter

Instead of dealing with the determinant, consider the truncated Taylor expansion of
DtN operator

Tn(@) =To+oTi+ -+ 0™, (14)
wherey = y + o and
- 19 _ _
T=-—T@G), |=0,....,m. (15)
IMay!

For the current iterate the next iterate is determined from the smallest value (in modulu
of o that makes the matrix polynomial (14) singular. For that, write

T(o) = amT_osn<1>, (16)

o
where
Sn(A) = Ag+ AAL + -+ AMLAL 1 AT (17)

and A, = Ty *Ti_k. SinceT is nonsingular (otherwisg Would be a Floquet exponent),
the matrix polynomialT,, (o) becomes singular only i§,(1/0) is singular. It follows
that the correction of the current iterate is given by the reciprocal of the largest eigenv:
of the companion matrix

| A (18)

of the matrix polynomialS,,. Thus the companion matrix has sixg€4p + 2) and hence,
sincep andm are typically small, the eigenvalue problem can be solved inexpensively us
standard linear algebra routines.

It remains to determine the expansion coeffici@gtsTy, . . ., Tm. In the following we will
describe how these terms can be calculated stably without evaluating numerical derivat
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Expansion of the Exterior DtN-Map

The diagonal coefficients of the exterior DtN-map are determined by the dispers
relation (8) for which the Taylor expansion must be determineg. 3y + o then the
transverse wave number can be considered as a function of the perturbatior ke.,
v (o). Dropping obvious super- and subscripts and setting v/ (2rik + )2 + «2 and
uk = —(2ik + y)/y, one obtains the expansion

2
(o) = Vk\/ 1- 2= + (i) (19)
Yk Yk
= &Y Cal) (%) . (20)
n=0

The functionsC,, () are orthogonal polynomials which have three-term recurrence re
tions; see, e.g., Abramowitz and Stegun [1, Formulas 22.9.4 and 22.7.3].

Expansion of the Interior DtN-Map

The interior DtN-map and its expansion coefficients have no closed form. Therefore
coefficients must be determined from an expansion of the solution of the interior probl
in terms of the perturbatiom. For this, write (9) symbolically in the form

(A+oB+0?l)v=0, inDg (21)
wherey =y + o and

Av = Av +2pv, + (¥ + kP, (23)

Bv = 2y (v, + v). (24)

Thus the solution of (9) is a function of the perturbatioa- v(o, X, z) with expansion
v(o, X, Z) = Z o"vn(X, 2). (25)
n=0

If the above series is substituted into the partial differential equation, it can be seen tha
coefficientsv, satisfy

Avg =0, in Do,

(26)
vp="Ff onS,
Av; = —Buyg, in Do, (27)
v1 =0, onsS,
Av, = —Bvy_1 — vn_2, in Do,
on tn-1 7 tn-2 ® nh=23... (28)
Uph = 0, on S’_I:v

Thus the functions, and the expansion coefficients of the interior DtN-map can be ce
culated iteratively. Each step of the iteration involves an inversion of the interior proble
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for the current iteratg with an inhomogeneity which depends on the previously calculatt
functions. Since this iteration has to be done for tpetd2 harmonics in the discretization
of T (y), the calculation of the entries in the companion matrix (18) tékes 1)(4p + 2)
solutions of the interior problem.

5. EXPANSION OF TRANSLATION OPERATORS

Since the interior problem must be solved repeatedly for each step of the nonlinear sc

itisimportant for the efficiency of the method that the donmagis kept as small as possible.
This can be achieved by including the uniform layers in the exterior doniainand D _.
In that case, the exterior DtN-map is still a diagonal operator, because no mode couy
occurs, but itis no longer given by the dispersion relation (8). In this section we will der
the form of the DtN-map and its expansion coefficients. For this it is convenient to wr
the solution in the uniform layers (7) for mo#teand layerj in the form

Vh(X) = B (0)Ch(0, X) + ¥ (0)8(0, %), Xj_1 <X < Xj, (29)

whereo is the perturbation of and

6l (0, x) = cos(yy} (@) (x — Xj_1)), (30)
5. (0, X) = Sin(y () (X = Xj_1)) /%) (©). (31)
Hence the state variablgs$ andy! describe the system at the interface of two layers
vl (1) = B (o), (32)
d . i
a;¢WFD=Wd%®~ (33)
Sincev and its derivative are continuous functions the state variables of two adjacent la
are coupled,
@] [
[ ) ] =-m<a>[ | (34)
Vi () v (o)

whereTkj is the translation of the state variables across lay&rich is the matrix

clo.x)  sh(o.x))

d A d ol ’ (35)
%@, X)) gxS (o, X))

T (o) =

Thus the translation of the state variables from the outer- to the innermost layer (i.e.,
interfaceS_ located ak;-) is the product of the translation operators across all layers

o (o) -
kj, a9 T @) T(0) [
'ﬂk (o)

The translation to the interfac® located ak;- follows in a similar fashion. The DtN maps
at S are then given by

1
Y (o) } ' (39)

Iﬁgi(U) 4

o (o)

Texi(0) Qit = (37)
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Beginning with the dispersion relation (8), the DtN operator for the exterior proble
consists of several applications (products) of translations followed by a division. To obt
the Taylor expansion Of(o), power series expansions must be multiplied and divide
which reduces to convolutions and deconvolutions of the expansion coefficients. Thus
expansion of the dispersion relation (20) must be repeatedly convolved with the expan
of the translation matrices. Finally, the resulting series must be divided (i.e., deconvolv
to obtain the expansion of the DtN map at the interfa8es

Since the expansion of*(o) has already been derived in (20), it remains to obtain th
expansion of the translation matric'@é(a). This reduces to finding the Taylor series of the
functionsc} ands;. The explicit form of the coefficients is a rather complicated expressio
but the coefficients can also be calculated iteratively in a similar way as for the inter
problem in (26)—(28). The details of the derivation are described in the appendix.

6. NUMERICAL EXAMPLE

To demonstrate the feasibility of this approach to calculating Floquet exponents a:
ciated with periodic dielectric waveguides we include a simple example with geome
similar to that in Fig. 1, which consists of three layers whose wavenumbers are gi
by ko =+/2.3w, k1 =+/3w, andk, = w. The layerQ; contains a rectangular corrugation
0.4 units in height. The smallet-extent ofQ2; is 2/x. This example makes frequent ap-
pearances in the literature; see, e.g., [3].

For our calculations, the interfac&s coincide with the grating layer. Thus there is one
translation operation across the guiding layer for the state variables. The interior prok
was discretized into rectangles with piecewise bilinear basis functions.

Figure 3 shows the dependence of the phase shift y of the frequencyw. There are
three solution branches in the displayed frequency range, they intersect at the first and se

4.5

3.5

2.5F

1
25 3 3.5 4 4.5 5 5.5 6 6.5 7

1'5 1 1 1
2

FIG.3. - Plot.
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FIG. 4. «a—w plot for the main branch (top) and the other two branches (bottom).

Bragg condition. Figure 4 shows the attenuation faetarfor the three solution branches
as a function ofv. Before the first Bragg there is no radiation and since the materials h:
been assumed to be lossless, the attenuation is zero. At the first Bragg a stopband ap
at the second Bragg a sharp drop occurs before the attenuation goes back to normal.

TABLE |
Convergence of the Dominant Floquet Exponenty = 7

—Re(y)

h 0.1 0.05 0.025 0.0125 0.00625
p=0 —7.77e-15 —3.47e-13 —7.68e-13 1.08e-11 1.36e-11
p=1 0.010576 0.0098030 0.0096199 0.0095745 0.0095631
p=2 0.010458 0.0096259 0.0094239 0.0093737 0.0093611
p=3 0.010459 0.0096259 0.0094248 0.0093746 0.0093620
p=4 0.010459 0.0096254 0.0094241 0.0093738 0.0093612
p=5 0.010459 0.0096255 0.0094242 0.0093739 0.0093613
p=6 0.010459 0.0096254 0.0094241 0.0093738 0.0093612
p=7 0.010459 0.0096254 0.0094241 0.0093738 0.0093612

=Im(y)

h 0.1 0.05 0.025 0.0125 0.00625
p=0 4.98213 4.98100 4.98059 4.98046 4.98043
p=1 4.96719 4.96633 4.96608 4.96601 4.96599
p=2 4.96719 4.96639 4.96610 4.96604 4.96602
p=3 4.96720 4.96639 4.96615 4.96609 4.96607
p=4 4.96720 4.96639 4.96615 4.96609 4.96607
p=5 4.96720 4.96639 4.96616 4.96609 4.96607
p==6 4.96720 4.96639 4.96616 4.96609 4.96607
p=7 4.96720 4.96639 4.96616 4.96609 4.96607
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FIG.5. Convergence of nonlinear solver cond (y) vs iteratew = 3.14 (left) andw = 2.02 (right).

Table | displays the real and imaginary parts of the dominant Floquet exponent ¢
function of the number of modes and the mesh width used in the discretization of the D
map. Even for a very coarse mesh and a small number of modes the approximation is «
to the one obtained with fine meshes and higfrhe convergence ip is much faster than
that inh; therefore even for fine meshes a Igwill suffice. The results in the table are
shown forw = 7, the convergence behavior at the other frequencies is similar.

In Fig. 5 we show the behavior of the nonlinear solver as a function of the numt
of moments in the expansion of the DtN-map. ko 3.14 the convergence is faster as
the number of moments is increased, but even a small number of moments suffice
achieve rapid convergence. Where solution branches intersect or nearly intersect one v
expect the convergence rate of the nonlinear solver to deteriorate. However, our experin
revealed that once the iterate is sufficiently close to the actual solution, the converge
near the Bragg conditions is almost as rapid in regions where there is only one solu
branch.

7. CONCLUSIONS

In this paper we have introduced a new approach to calculating the Floquet modes of
dimensional waveguides. The main feature of our method is the reduction of the eigenv
problem posed in an infinite strip to an eigenvalue problem posed on two intervals
unit length. The matrix—Newton method is better suited for nonlinear eigenvalue proble
associated with Floquet-type wave phenomena than methods that are based on settil
determinantto zero. The numerical results demonstrate that Floquet modes can be calct
accurately and efficiently by retaining a small number of harmonics in (11) and a sn
number of expansion terms in (14). The approach of finding the characteristic values of
DtN map rather than the PDE can readily be extended to problems which are inhere
three-dimensional.

The method presented of determining the eigenvalues assumes that the assumptic
Lemma 1, namely that the interior and exterior problems are uniquely solvable, hold i
neighborhood of the Floquet exponent. The exterior problem is always solvable as soc
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the sign in (7) is determined, and the solvability of the interior problem can be control
by the extend of the domaibDg. In our experiments the assumptions of the lemma nev
appeared to cause any problems.

APPENDIX
The expansion coefficients of the functiocf;sandqi defined in (30) and (31) can be

obtained recursively. The calculation is based on the observation that both functions se
the differential equation

Y+ ((v +27ik)> +47) y =0 (38)

with boundary conditions

y(xj-) =1, y(xj-1) =0, forck, (39)
y(xj-) =0, y(xj_1) =1, forsf. (40)
If y = 3 + o both functions can be expanded in the form
> o). (41)
n=0

Substituting this expansion into the differential equation, it follows thattfesolve the
recurrence relation

Yo+ (W) °Yn = —2A Y01 = Yoz, N=12... (42)
Yn(Xj-1) = Yp(Xj-1) =0, (43)
wherey_; = 0andyp(x) = cosy) (X —Xj_1)) for ¢} or yo(x) = sin(31) (x — xj_1)) /7 for

sﬁ-‘. The solution of the above differential equation with right hand didmn be expressed
using the Green'’s function for this problem,

y(x) = _i]/ sin(73 (x — ) f () dt = Sf(x). (44)
Yk J0

Settingc,(X) = cos(;7kj X)x" ands, (X) = sin(;7kj x)x", we see that

1 1 n
SG=—(——Su1— =S%1]). 45
G )7kj<n+131+1 2%1) (45)
1 -1 n
Ss = —(——¢ ~SG1 ). 46
S ﬂ(n+ln+1+2f}11> (46)

By combining Eqgs. (44), (45), and (42), it follows that the expansion coefficigiity are
linear combinations of the functioms, . .., ¢, ands, . . ., Sy, whose weights can be again
recursively determined.
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